Artificial

Causality Guided Disentanglement for Cross-Platform Hate Speech Detection

Paras Sheth¹, Raha Moraffah¹, Tharindu Kumarage¹, Aman Chadha², Huan liu¹

¹Computer Science and Engineering, Arizona State University

Arizona, USA

²Amazon Alexa AI

Sunnyvale, USA

{psheth5,rmoraffa,kskumara,huanliu}@asu.edu,hi@aman.ai

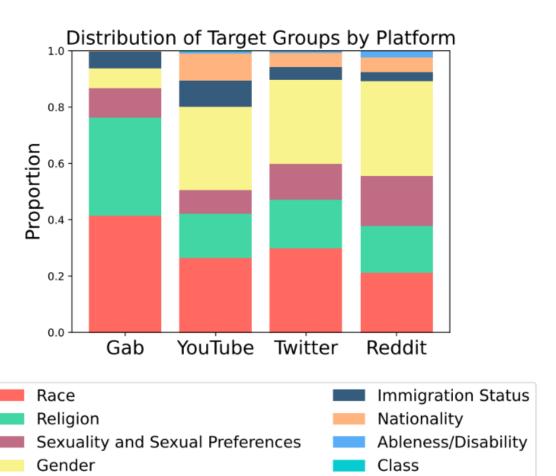
Code: https://github.com/paras2612/CATCH

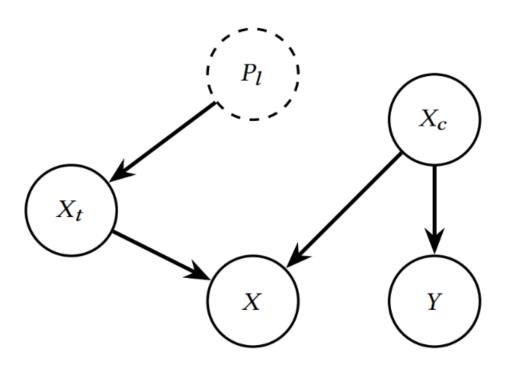
— WSDM 2024

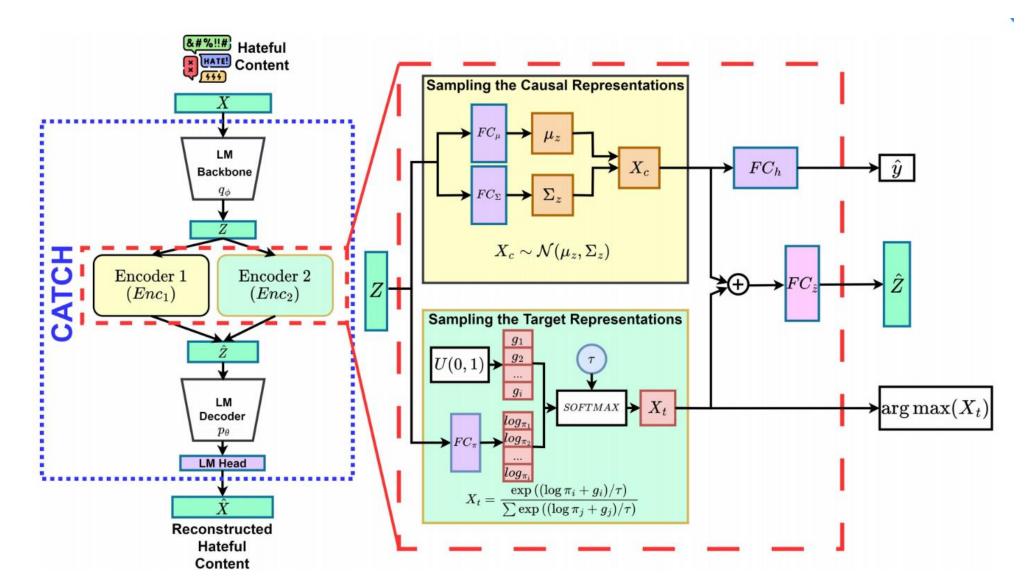
2023. 12. 24 • ChongQing

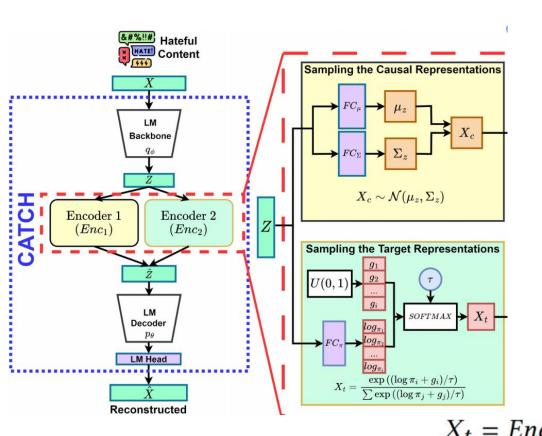
Reported by Renhui Luo

- 1.Introduction
- 2.Overview
- 3.Methods
- 4. Experiments






Introduction

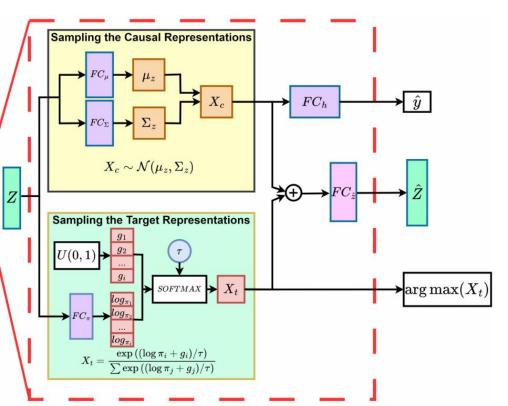

Introduction

Overview

Method

$$z = q_{\phi} (\gamma(x)), \qquad (1)$$

$$\mu_z = FC_{\mu}(z), \Sigma_z = FC_{\Sigma}(z),$$


$$X_c = Enc_1(\mu_z, \Sigma_z) = \mu_z + \Sigma_z \odot \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}). \tag{2}$$

$$z_{\pi} = FC_{\pi}(z)$$

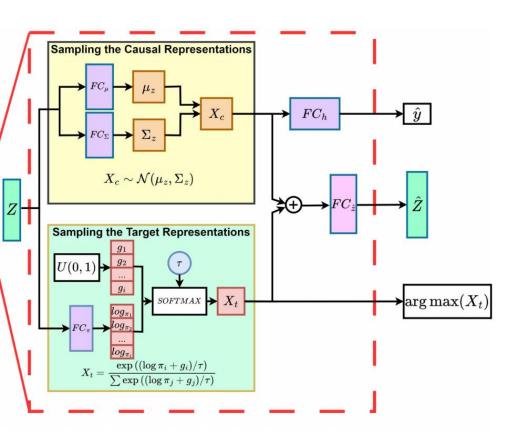
$$X_t = Enc_2(\pi, g) = \frac{\exp\left(\left(\log\left(\pi_i\right) + g_i\right)/\tau\right)}{\sum_{j=1}^{h_{disc}} \exp\left(\left(\log\left(\pi_j\right) + g_j\right)/\tau\right)} \quad \text{for } i = 1, \dots, h_{disc}.$$

(3)

Method

$$\hat{z} = FC_{\hat{z}}([X_c||X_t])$$

$$\hat{x} = LMHead(p_{\theta}(\hat{z})) \tag{4}$$


$$\mathcal{L}_{recon}(\gamma(x), \hat{x}) = -\sum_{i=1}^{S} \gamma(x) \log(\hat{x}_i)$$
 (5)

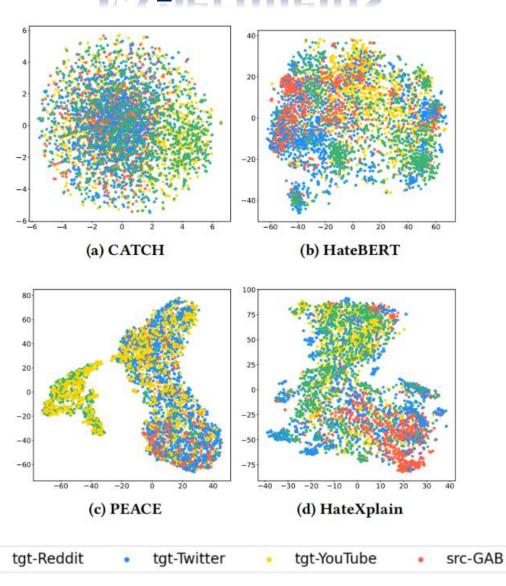
$$\mathcal{L}_{VAE} = \mathcal{L}_{recon} + \alpha_t * L_{\mathbb{D}_{target}} + \alpha_c * L_{\mathbb{D}_{causal}}, \tag{6}$$

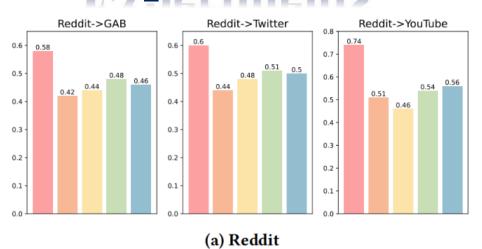
$$L_{\mathbb{D}_{target}} = -D_{\text{KL}} \left(Enc_2(X_t \mid X) || p(X_t) \right) + \alpha_{tc} * \mathcal{L}_{CE}(\arg\max(X_t), t)$$
(7)

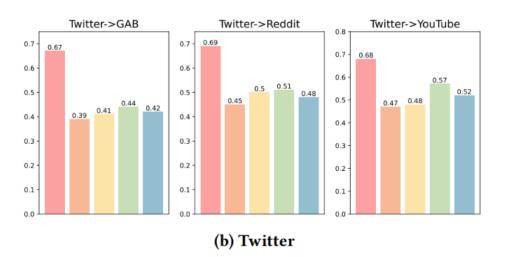
$$L_{\mathbb{D}_{causal}} = -D_{KL} \left(Enc_1(X_c \mid X) || p(X_c) \right) \tag{8}$$

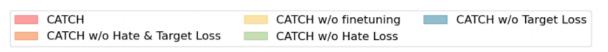
Method

$$\hat{y}_i = \text{Softmax}(FC_h(X_c)) \tag{9}$$


$$\mathcal{L}_{hate} = -\frac{1}{N} \sum_{i=1}^{|D_{source}|} y_i \log \hat{y}_i$$
 (10)


$$\mathcal{L} = \mathcal{L}_{hate} + \mu_d \mathcal{L}_{VAE} \tag{11}$$


Datasets	No. of Posts	Hateful Posts	Hate %
GAB [29]	11,093	8,379	75.5
Reddit [18]	37,164	10,562	28.4
Twitter [29]	9,055	2,406	26.5
YouTube [36]	1,026	642	62.5


Table 2: Dataset statistics with corresponding platforms and percentage of hateful comments or posts.

Source	Target	Models					
		Easy	Hate	Hate	POS+	PEACE	CATCH
		Mix	Bert	Xplain	EMO		
GAB	GAB	0.70	0.89	0.87	0.77	0.76	0.82
	Reddit	0.62	0.66	0.66	0.56	0.69	0.72
	Twitter	0.64	0.63	0.65	0.44	0.64	0.69
	YouTube	0.62	0.60	0.62	0.50	0.64	0.66
Reddit	GAB	0.51	0.52	0.56	0.45	0.55	0.58
	Reddit	0.95	0.98	0.94	0.91	0.90	0.86
	Twitter	0.54	0.51	0.54	0.43	0.55	0.60
	YouTube	0.64	0.69	0.60	0.57	0.70	0.76
Twitter	GAB	0.62	0.63	0.62	0.56	0.65	0.67
	Reddit	0.64	0.62	0.62	0.48	0.66	0.69
	Twitter	0.67	0.86	0.83	0.68	0.63	0.78
	YouTube	0.65	0.59	0.63	0.53	0.64	0.68
YouTube	GAB	0.44	0.62	0.47	0.43	0.48	0.56
	Reddit	0.67	0.65	0.62	0.56	0.69	0.72
	Twitter	0.45	0.59	0.56	0.49	0.58	0.64
	YouTube	0.86	0.84	0.88	0.64	0.86	0.79

Models	Target Platforms					
	GAB	Reddit	Twitter	YouTube		
GPT4	0.64	0.66	0.67	0.63		
Falcon	0.42	0.58	0.54	0.55		
CATCH (Avg.)	0.61	0.71	0.64	0.70		

Table 3: Performance comparison of LLMs, GPT4 and Falcon, with CATCH for generalizable hate speech detection.

Thanks!